If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2+16x-55)=0
We get rid of parentheses
x^2+16x-55=0
a = 1; b = 16; c = -55;
Δ = b2-4ac
Δ = 162-4·1·(-55)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{119}}{2*1}=\frac{-16-2\sqrt{119}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{119}}{2*1}=\frac{-16+2\sqrt{119}}{2} $
| 3n−n−2=14 | | 8x−10x=12 | | 5w+4w=-18 | | -7(x=3)=-4(x-6) | | 6x-4=6x-8x-6 | | 9y-8=17y | | 45y+16*9=7y | | -3/2=-4/5v-4/3 | | -7/6+9/5u=-3/2 | | 8(4+c)=42 | | 2x+12=x+25 | | 11x-7+7x+1=180 | | 3(y-10)+1=19(y-8) | | 8(c-6)=78 | | 14-(x=5)=3(x+9)-10 | | x-7.2=9.12 | | 13+2k=3k+13 | | |x-8|+8=25 | | -3p-3.4=12.2 | | -5w+2(w-7)=13 | | 7-7x=19-7 | | -9p+17=17 | | 2(t+I)=10 | | 3y-12=6y | | 3(m+3)=35 | | 2y-5=34 | | 8(x+2)=-7 | | 3x+8=5x-18 | | 4=x+31/6 | | H=-5t^2+15+20 | | -8=-2+3w | | -2x^2=-8x+13 |